Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer.
نویسندگان
چکیده
Altered myocardial fuel selection likely underlies cardiac disease risk in diabetes, affecting oxygen demand and myocardial metabolic flexibility. We investigated myocardial fuel selection and metabolic flexibility in human type 2 diabetes mellitus (T2DM), using positron emission tomography to measure rates of myocardial fatty acid oxidation {16-[(18)F]fluoro-4-thia-palmitate (FTP)} and myocardial perfusion and total oxidation ([(11)C]acetate). Participants underwent paired studies under fasting conditions, comparing 3-h insulin + glucose euglycemic clamp conditions (120 mU·m(-2)·min(-1)) to 3-h saline infusion. Lean controls (n = 10) were compared with glycemically controlled volunteers with T2DM (n = 8). Insulin augmented heart rate, blood pressure, and stroke index in both groups (all P < 0.01) and significantly increased myocardial oxygen consumption (P = 0.04) and perfusion (P = 0.01) in both groups. Insulin suppressed available nonesterified fatty acids (P < 0.0001), but fatty acid concentrations were higher in T2DM under both conditions (P < 0.001). Insulin-induced suppression of fatty acid oxidation was seen in both groups (P < 0.0001). However, fatty acid oxidation rates were higher under both conditions in T2DM (P = 0.003). Myocardial work efficiency was lower in T2DM (P = 0.006) and decreased in both groups with the insulin-induced increase in work and shift in fuel utilization (P = 0.01). Augmented fatty acid oxidation is present under baseline and insulin-treated conditions in T2DM, with impaired insulin-induced shifts away from fatty acid oxidation. This is accompanied by reduced work efficiency, possibly due to greater oxygen consumption with fatty acid metabolism. These observations suggest that improved fatty acid suppression, or reductions in myocardial fatty acid uptake and retention, could be therapeutic targets to improve myocardial ischemia tolerance in T2DM.
منابع مشابه
Experimental production and initial imaging of [18F]-14-Fluoro-6-thia-heptadecanoic acid ([18F]-FTHA) for myocardial performance [Persian]
Introduction: [18F]-6-thia-14-fluoro-heptadecanoic acid 3b, a free fatty acid, has been used in myocardial PET imaging. In order to establish an automated synthesis module for routine production in the country, a study performed for optimization of the production conditions as well as making modifications. Methods: [18F] Benzyl-14-Fluoro-6-thia-heptadecanoate 2b was prepared in no-carrier...
متن کاملPhase IIa Clinical Trial of Trans-1-Amino-3-18F-Fluoro- Cyclobutane Carboxylic Acid in Metastatic Prostate Cancer
Objective(s): We performed a phase IIa clinical trial of trans-1-amino-3-18Ffluoro-cyclobutane carboxylic acid (anti-18F-FACBC), a synthetic amino acid analog for PET, in patients with metastatic prostate cancer. Methods: The study subjects consisted of 10 untreated prostate cancer patients having lymph node and/or bone metastasis. Five patients underwent whole-body PET 5 and 30 min after intra...
متن کاملDiagnostic Performance and Safety of Positron Emission Tomography Using 18F-Fluciclovine in Patients with Clinically Suspected High- or Low-grade Gliomas: A Multicenter Phase IIb Trial
Objective(s): The study objective was to assess the diagnostic performance of positron emission tomography (PET) for gliomas using the novel tracer 18F-fluciclovine (anti-[18F]FACBC) and to evaluate the safety of this tracer in patients with clinically suspected gliomas.Methods: Anti-[18F]FACBC was administered to 40 patients with clinically suspected high- or low-grade gliomas, followed by PET...
متن کاملFatty acid uptake is preserved in chronically dysfunctional but viable myocardium.
Glucose uptake appears preserved or even enhanced in the chronically dysfunctional but viable myocardium. However, the use of other fuels such as free fatty acids (FFA) remains unknown. We studied FFA uptake in the chronically dysfunctional but viable myocardium in seven patients with an occluded major coronary artery and a corresponding chronic wall motion abnormality but no previous infarctio...
متن کاملMetabolism substrate with negative myocardial uptake of iodine-123-BMIPP.
UNLABELLED Iodine-123-BMIPP is an iodinated methyl-branched-chain fatty acid. Low uptake of BMIPP relative to thallium or other perfusion tracer indicates metabolically damaged but viable myocardium (for example, ischemic but viable myocardium). In some cases, however, negative myocardial uptake of BMIPP is observed. The main purposes of this study were to assess the frequency of such BMIPP fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 310 6 شماره
صفحات -
تاریخ انتشار 2016